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A B S T R A C T S  A R T I C L E   I N F O 

Accurate modeling of biomass co-firing systems is essential to enhance 

renewable energy usage by optimizing efficiency and minimizing harmful 

emissions. Traditional modeling approaches, such as mathematical models 

and simulations, have limitations in capturing the complex dynamics and non-

linear relationships inherent in co-firing systems. In contrast to traditional 

modeling, machine learning provides a promising approach by utilizing 

historical data patterns to create precise prediction models. This paper reviews 

recent machine learning techniques applied in modeling biomass co-firing 

systems, focusing specifically on models for predicting thermal efficiency and 

emissions. The examined studies exhibit machine learning's potential to 

accurately forecast and enhance thermal efficiency factors like feed water, 

fuel, and air properties. Deep learning methods, including Deep Neural 

Networks (DNN) and Artificial Neural Networks (ANN), have shown 

superior modeling capabilities in optimizing thermal efficiency. Regression 

tree, random forest, and fuzzy logic algorithms have also proved effective in 

optimizing thermal energy production and power estimation. Moreover, 

machine learning algorithms such as Support Vector Machine (SVM), 

Gaussian process (GP), polynomial regression, and fuzzy logic have 

demonstrated accurate predictions of emissions, including CO2, NOx, and 

other pollutants. Challenges related to data availability, model interpretability, 

and scalability need to be addressed for further advancements in machine 

learning modeling.  
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INTRODUCTION 

 

The combined combustion of biomass and fossil 

fuels, known as co-firing, has become a favorable 

technique to minimize greenhouse emissions and utilize 

renewable bioenergy for power generation. Co-firing 

provides a relatively simple way to cut down CO2, SOx, 

and NOx emissions by substituting biomass for portions 

of fossil fuel usage. Additionally, biomass co-firing has 

the potential to maintain total boiler efficiency even 

when adjusting combustion output for the new fuel 

mixture. However, the successful implementation of 

biomass co-firing relies on various factors, including 

biomass supply, delivery systems, biomass 

characterization, and addressing technical challenges 

[1], [2]. 

Creating precise models of biomass co-firing 

systems is vital for the assessment, enhancement, and 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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effective management of this technology. Traditional 

modeling approaches, such as mathematical models and 

simulations, provide valuable insights but have 

limitations in capturing the complex dynamics and non-

linear relationships inherent in co-firing systems.  

Methods in machine learning (ML) have arisen as a 

potential solution for constructing and improving 

models of biomass co-firing systems. ML algorithms 

can learn from historical data and discover complex 

patterns, enabling accurate prediction of important 

parameters such as combustion efficiency and emission 

[3]. 

This paper aims to provide a comprehensive review 

of the advancements in machine learning modeling of 

biomass co-firing systems, with a specific focus on 

thermal efficiency and emission modeling. Although the 

literature covers diverse research on biomass 

combustion, our analysis concentrates distinctly on the 

machine learning techniques used for modeling and 

enhancing thermal efficiency and emissions forecasts. 

By analyzing the relevant methods and assessing their 

potential, strengths, limitations, and potential 

challenges, this review aims to identify the applicability 

of ML modeling in biomass combustion systems. 

Additionally, we explore the implications of these 

advancements and provide insights into future research 

directions. 

The remainder of this paper is organized as follows: 

Section 2 focuses on modeling thermal efficiency in co-

firing systems using machine learning techniques. 

Section 3 explores the application of machine learning 

in emission modeling for co-firing. Section 4 presents 

the conclusions drawn from the review and discusses 

future research opportunities. 

This review examines several machine learning 

approaches relevant to modeling thermal efficiency and 

other facets of biomass co-firing, offering important 

understanding and recommendations for researchers, 

policy creators, and industry experts striving to improve 

renewable energy generation. 

 

THERMAL EFFICIENCY MODELING USING 

MACHINE LEARNING 

 

This section examines the use of machine learning 

approaches to model thermal efficiency in biomass co-

firing systems. Thermal efficiency plays a crucial role in 

optimizing the performance of co-firing processes and 

reducing energy wastage. By utilizing machine learning 

methods, researchers have explored various approaches 

to analyze and predict thermal efficiency in co-firing 

systems. 

A key study by Wang et al. [4] examined enhancing 

thermal efficiency through deep learning techniques, 

including Deep Neural Networks (DNN), Artificial 

Neural Networks (ANN), and Partial Least Squares 

(PLS). They investigated the relationship between 

thermal efficiency and eight input parameters associated 

with feed water, fuel, and air. Through their analysis, 

they found that DNN outperformed both ANN and PLS, 

demonstrating superior modeling capabilities. Notably, 

the DNN model showcased the ability to leverage 

unlabeled data, leading to an average improvement in 

thermal efficiency by 0.61%. 

C. Wang et al. [5] aimed to reduce Unburned Carbon 

Content in Fly Ash (UCC-FA), which is the most 

important indicator of boiler combustion efficiency in a 

boiler system by employing the Gaussian process (GP) 

algorithm. They optimized the GP model's 

hyperparameters using the Genetic Algorithm (GA) and 

achieved a significant decrease in UCC-FA from 2.7% 

to 1.7%. This study demonstrates the effectiveness of 

machine learning in enhancing thermal efficiency and 

optimizing boiler combustion operations. 

Akbas and Özdemir [6] aimed to model thermal 

energy production (TEP) and utilized regression tree, 

random forest, non-linear regression, Support Vector 

Regression (SVR), and Artificial Neural Networks 

(ANN). By employing an integrated ANN-Particle 

Swarm Optimization (PSO) model, they achieved a 

significant 4.24% increase in thermal energy 

production, emphasizing the effectiveness of the applied 

machine learning models. 

Ashraf et al. [7] proposed a comprehensive step-wise 

methodology for implementing Industry 4.0 in a coal 

power plant to enhance thermal efficiency. They 

considered ten characteristic parameters and employed 

Artificial Neural Networks (ANN) and Least Square 

Support Vector Machine (LSSVM) algorithms. Their 

research demonstrated the potential of integrating 

Industry 4.0 practices and machine learning algorithms 

to improve thermal efficiency in coal power plants. 

Karaçor et al. [8] focused on power estimation and 

utilized fuzzy logic (FL) and artificial neural network 

(ANN) algorithms. Their results showed accurate power 

estimation, with FL exhibiting error values between 

0.59% and 3.54%, and ANN demonstrating error values 

ranging from 0.001% to 0.84%. 

Han et al. [9] investigated the modeling of 

combustion operation conditions using machine 

learning techniques. The accurate modeling and 

prediction of these operation conditions contribute to 

optimizing thermal efficiency by enabling better control 

of combustion processes under different scenarios. They 

employed a combination of Convolutional Sparse 

Autoencoder (CSAE) and Least Support Vector 

Machine (LSSVM) algorithms. Their findings 

demonstrated a high prediction accuracy of 98.06%, and 

a fast prediction time of 3.06 ms per image, highlighting 

the effectiveness of machine learning in capturing 

thermal efficiency-related factors through flame 

imaging. 

Effendy et al. [10] aimed to predict the oxygen 

content in a thermal system and utilized Artificial 

Neural Networks (ANN) and random forest-based soft 

sensor models. Both models provided relatively 

accurate predictions, showcasing the effectiveness of 

machine learning in optimizing thermal efficiency. 

Hong and Kim [11] focused on predicting exhaust 

temperature in a thermal system. Exhaust temperature is 

a key indicator of combustion efficiency in gas turbines. 

Higher exhaust temperatures signify better utilization of 

fuel energy, resulting in improved thermal efficiency. 

They employed a CNN-RNN-based time series 

prediction model combining Convolutional Neural 
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Networks (CNN) and Recurrent Neural Networks 

(RNN). Their research demonstrated accurate 

predictions of exhaust temperature, with a comparison 

between Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) algorithms revealing the trade-

off between prediction accuracy and calculation time. 

These studies collectively contribute to the 

advancement of machine learning models for thermal 

efficiency modeling, highlighting their potential in 

optimizing various aspects of thermal systems. Table 1 

summarizes the application of machine learning 

approaches for modeling thermal efficiency. 

 

 

Table 1. Summary of the application of machine learning approaches for modeling thermal efficiency. 

 

Author Year Characteristic parameters Algorithm Result 

J. Wang et al. 

[4] 

2017 8 input parameters 

• feed water-related:  

flow rate (Ffw), temperature 

before the economizer (Tfwa), 

temperature after economizer 

(Tfwb), pressure (Pfw)  

• fuel related:  

coal flow rate (FCOAL), BFG 

flow rate (FBFG), BFG heating 

value (HBFG) 

• air related:  

airflow rate (Fair) 

Deep Learning 

(DNN, ANN, PLS) 

DNN has better modeling 

than ANN and PLS and can 

use a large number of 

unlabeled data.  

The improvement of 

thermal efficiency averages 

0.61% after optimization 

C. Wang et al. 

[5] 

2017 Four-first air speeds (AA, BB, 

CC, DD), Five-second air 

speeds (A, B, C, D, E), Over 

fired air speed (OFA), Oxygen 

concentration at the outlet of 

the furnace (O2), The load of 

the boiler (Load), Total air rate 

(Tar), Four pulverized coal 

feeder speeds (C1, C2, C3, 

C4), Four coal properties (Mt, 

Aar, Vdaf, Qnet.ar) 

Gaussian Process 

(GP) and genetic 

algorithm (GA) 

Unburned Carbon Content 

in Fly Ash (UCC-FA), 

which is the most important 

indicator of boiler 

combustion efficiency, 

decreases from 2.7% to 

1.7% 

H. Akbas and 

G. Özdemir 

[6] 

2020 The dataset includes 22 inputs:  

grate load (GL), primary air 

fan passage ratio (PFPR), 

sanding dust and sawdust load 

(SDSL), secondary air fan 

passage ratio (SFPR), flue gas 

inlet temperature to radiation 

(FGTR), flue gas inlet 

temperature to mixing 

chamber (FGTMC), ambient 

air fan passage ratio (AFPR), 

thermal fan passage ratio 

(TFPR), the internal pressure 

of boiler (IPB), oil flow rate 

(OFR), oil inlet temperature to 

convection (OITC), oil exit 

temperature from radiation 

(OETR), boiler stack by-pass 

damper passage ratio (BSPR), 

total steam flow to refiner 

(TSFR), pressure of dryer 

(PD), dryer stack by-pass 

damper passage ratio (DSPR), 

main fan damper passage ratio 

(MFPR), steam control valve 

passage ratio (SVPR), heated 

• Prediction:  

Regression tree (RT), 

random forest (RF), 

non-linear regression 

(NLR), SVR, and 

ANN  

• Optimization: 

integrated ANN–

PSO model 

Thermal energy production 

has increased by 4.24% 
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Author Year Characteristic parameters Algorithm Result 

oil flow rate to press (HOFP), 

heated oil flow rate to 

melamine press and 

impregnation (HOFMI), 

heated oil flow rate to steam 

generator (HOFSG), and fiber 

production rate (FPR). 

W. Ashraf et 

al.  [7] 

2020 10 variable: 

Superheated steam flow, 

Superheater outlet steam 

pressure, Superheater outlet 

steam temperature, Reheat 

steam flow, Reheater steam 

inlet pressure, Reheater steam 

outlet pressure, Reheater steam 

inlet temperature, Reheater 

steam outlet temperature, 

Feed-water pressure, and Feed-

water temperature 

Artificial neural 

network (ANN) and 

least square support 

vector machine 

(LSSVM) 

Possible to enhance the 

thermal efficiency 

M. Karaçor et 

al.[8]  

2021 Year, Fuel, Temperature Fuzzy logic (FL) and 

artificial neural 

network (ANN) 

Error-values: 

FL between 0.59% and 

3.54% 

ANN between 0.001% and 

0.84% 

Z. Han et al. 

[9] 

2021 Flame imaging A combination of 

convolutional sparse 

autoencoder (CSAE) 

and least support 

vector machine 

(LSSVM) 

Prediction accuracy is 

98.06% and prediction time 

is 3.06 ms/image. 

N. Effendy et 

al. [10] 

2022 19 Variable: 

Deaerator level, The feed flow 

rate of boiler water to the 

superheater, The temperature 

of advanced steam in the 

superheater, Feedwater flow 

rate, Main gas inlet flow rate to 

the furnace, Fuel gas pressure 

behind the control valve, 

Combustion airflow rate, Air 

pressure of burner box, Main 

steam temperature, Furnace 

exhaust gas pressure, The 

temperature of boiler Flue gas, 

Boiler steam pressure, Wind 

box pressure, Combustion air 

temperature, Steam drum 

boiler levels, Primary steam 

header flow rate, The water 

inlet temperature of the 

economizer, The water outlet 

temperature of the economizer, 

Oxygen content 

Artificial neural 

network (ANN) and 

random forest-based 

soft sensor 

RF MAE 0.0486, MSE 

0.0052, RSME 0.0718 and 

Std Error 0.0719 

ANN MAE 0.0715, MSE 

0.0087, RMSE 0.0935, and 

Std Error 0.0935 

C. Hong and J. 

Kim [11] 

2023 13 sensor features, including 

gas flow, inlet pressure, and air 

temperature 

CNN-RNN-based 

time series prediction 

model composed of 

six layers combining 

CNN and RNN 

CNN-RNN algorithms 

accurately predicted the 

exhaust temperature. The 

accuracy and time required 

were compared when using 

LSTM and GRU among 

RNN algorithms in the 

CNN-RNN network model. 



  28 

ejournal.brin.go.id/MIPI 

Author Year Characteristic parameters Algorithm Result 

The average calculation 

time of the GRU algorithm 

was short but LSTM 

predicted more accurately 

EMISSION MODELING USING MACHINE 

LEARNING 

 

In recent studies, several research efforts have 

focused on utilizing machine learning techniques to 

model and predict emissions in various domains. For 

instance, Saleh et al. [12] aimed to model CO2 

emissions by considering energy consumption 

parameters such as electrical energy and burning coal. 

They employed the Support Vector Machine (SVM) 

algorithm, which yielded a promising outcome with a 

Root Mean Square Error (RMSE) of 0.004. This study 

demonstrates the effectiveness of SVM in accurately 

predicting CO2 emissions, offering valuable insights for 

monitoring and controlling emissions. 

In their study, C. Wang et al. [13] aimed to reduce 

the NOx emissions of a 330MW boiler. They used the 

Gaussian process (GP) algorithm to model the 

relationship between NOx emissions and various boiler 

operation parameters. By optimizing the GP model's 

hyperparameters with the Genetic Algorithm (GA), they 

achieved a significant decrease in NOx emissions from 

345 ppm to 238 ppm. The study demonstrated the 

effectiveness of machine learning, specifically GP 

modeling, in reducing emissions and optimizing 

combustion operations. 

Elmaz et al. [14], performed another study to 

forecast emissions including CO, CO2, CH4, H2, and 

higher heating value (HHV) utilizing machine learning 

methods. They identified 16 characteristic features, 

including equivalence ratio, fuel flow rate, and 

temperature distribution. By employing polynomial 

regression, support vector regression, decision tree 

regression, and multilayer perceptron, they achieved 

high performance, with R2 values exceeding 0.9. This 

research showcases the potential of machine learning 

models in predicting emission levels and deepening our 

understanding of the relationships between 

characteristic parameters and emissions. 

Kovalnogov et al. [15] focused on improving the 

efficiency of burners and reducing emissions using 

machine learning. By considering various characteristic 

parameters like load, airflow, and fuel and oxidizer 

compositions, they applied mathematical modeling and 

machine learning algorithms. The results indicated that 

implementing flue gas recirculation and considering 

flow swirl significantly improved burner efficiency and 

reduced emissions. Furthermore, machine learning 

methods showed promising results in classifying the 

state of the burners, with random forest emerging as the 

best algorithm. This research emphasizes the potential 

of machine learning in optimizing burner efficiency and 

achieving emission reductions. 

Han et al. [16] carried out a study to create models 

predicting exhaust emissions, particularly NOx and 

CO2, with flame imaging as the key parameter. They 

employed stacked denoising autoencoders (SDAE), 

artificial neural networks (ANN), and other algorithms. 

The results exhibited high prediction accuracy, with R2 

values of 0.97 for NOx and 0.96 for CO2. This research 

highlights the effectiveness of machine learning 

techniques in accurately predicting exhaust emissions 

based on flame imaging data, enabling a better 

understanding of emission behavior and facilitating 

informed decisions for optimizing combustion 

processes. 

Krzywanski et al. [17] focused on predicting SO2 

and NOx emissions using machine learning. They 

considered nine input variables, including combustion 

mode, oxygen carrier, and fuel reactor temperature, 

utilizing fuzzy logic (FL) and artificial neural network 

(ANN) algorithms. The developed model successfully 

validated the emissions predictions, with relative errors 

below 10%. This research highlights the effectiveness of 

machine learning, particularly FL and ANN, in 

accurately predicting emissions based on various 

combustion-related variables, supporting emission 

control and mitigation strategies. 

Zhou et al. [18] aimed to estimate CO2 emissions 

from coal-fired power plants (CFPPs) in near-real-time 

using machine learning. By utilizing a simulated CFPP 

dataset and characteristic parameters like capacity and 

temperature, they employed the Emission Estimation 

Network (EEN), a heterogeneous network-based deep 

learning algorithm. The results showcased the accuracy 

and ease of implementation of the EEN approach. This 

research underlines the potential of machine learning 

models, particularly EEN, in providing timely and 

reliable estimations of emissions from CFPPs, enabling 

effective monitoring and assessment of environmental 

impact. 

Ren et al. [19] focused on predicting biomass 

gasification products, including N2, H2, CO, CO2, and 

CH4, using machine learning. By considering 

characteristic parameters such as equivalence ratio and 

temperature, they utilized the physics-informed neural 

network (PINN) method. The PINN models 

outperformed other algorithms, showcasing their 

superior prediction capabilities. This research 

demonstrates the effectiveness of machine learning, 

particularly PINN, in accurately predicting biomass 

gasification products, contributing to the development 

of sustainable energy solutions. 

In Wang et al.'s [20] study, the researchers aimed to 

predict NOx emissions by considering characteristic 

parameters related to steam flow, pressure, temperature, 

and feed water temperature. By combining a random 

forest (RF) algorithm with a lightweight convolutional 

neural network (CNN), they achieved high prediction 

accuracy. This research showcases the effectiveness of 
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machine learning in accurately estimating NOx 

emissions, providing valuable insights for optimizing 

emissions in power plants. 

Overall, these studies highlight the significant 

potential of machine learning techniques in modeling 

and predicting emissions across different domains. By 

leveraging characteristic parameters and employing 

various algorithms, these models contribute to our 

understanding of emission patterns, facilitate emission 

reduction strategies, and support sustainable practices. 

A summary of the machine learning techniques to model 

and predict emissions is provided in Table 2. 

 

Table 2. Summary of the Machine learning Techniques to Model and predict Emissions. 

 

Author Year Characteristic parameters Algorithm Result 

C. Saleh et al. 

[12] 

2016 Energy consumption such as 

electrical energy and burning 

coal 

Support Vector 

Machine (SVM) 

Root Mean Square Error 

(RMSE) with an error value 

of 0.004 

C. Wang et al. 

[13] 

2018 Four-first air speeds (AA, BB, 

CC, DD), Five-second air 

speeds (A, B, C, D, E), Over 

fired air speed (OFA), Oxygen 

concentration at the outlet of 

the furnace (O2), The load of 

the boiler (Load), Total air rate 

(Tar), Four pulverized coal 

feeder speeds (C1, C2, C3, 

C4), Four coal properties (Mt, 

Aar, Vdaf, Qnet.ar) 

Gaussian Process 

(GP), support vector 

machine (SVM), and 

genetic algorithm 

(GA) 

NOx decreases from 345 

ppm to 238 ppm 

F. Elmaz et al. 

[14] 

2020 16 Features: 

equivalence ratio (ER), fuel 

flow rate (FR), distribution of 

temperature (T0, T1, T2, T3, 

T4, T5), Carbon (C), Hydrogen 

(H), Oxygen (O), Nitrogen 

(N), Moisture (M), Volatile 

Matter (VM), Fixed Carbon 

(FC), Ash (A). 

Polynomial 

regression, support 

vector regression, 

decision tree 

regression, and 

multilayer perceptron 

Multilayer perceptron and 

decision tree regression 

achieving R2 > 0.9 

V. 

Kovalnogov et 

al. [15] 

2022 Load, Airflow, methane and 

biogas, fuel and oxidizer 

compositions, and others 

Mathematical 

modeling for 

Efficiency of Burners. 

ML to Improve the 

Efficiency of Burners 

Emission reduction of 15% 

with random forest is the 

best algorithm to classify 

the state of burners 

Z. Han et al. 

[16] 

2022 Flame imaging Stacked denoising 

autoencoder (SDAE), 

ANN, extreme 

learning machine 

(ELM), SVM, 

LSSVM, and 

Gaussian process 

regression (GPR) 

Prediction accuracy NOx 

(R2=0.97) and CO2 

(R2=0.96) 

prediction time NOx (38.78 

ms/f) and CO2 (38.76 ms/f) 
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Author Year Characteristic parameters Algorithm Result 

J. Krzywanski 

et al. [17] 

2022 9 variables input: 

the IDmode tag defining the 

combustion mode, the kind of 

oxygen carrier OC, excess 

oxygen OE in the fuel reactor, 

the average fuel reactor 

temperature T, the 

FCad/VMad ratio (ad—air-

dried basis), the Nad/Cad 

molar ratio, the sulfur content 

Sad and ash content Aad in the 

fuel (coal and biomass), the 

IDfuel tag defines the fuel 

type, 

Fuzzy logic (FL) and 

artificial neural 

network (ANN) 

Successfully validated 

maximum relative errors 

between the measured 

values and predicted by the 

developed model SO2 and 

NOx emissions are lower 

than 10%. 

S. Zhou et al. 

[18] 

2023 Simulated CFPP, Capacity 

(MW), TCHRFL, H, Range of 

χC, Range of HHV 

Emission Estimation 

Network (EEN) 

heterogeneous 

network-based deep 

learning 

A competitive approach 

that not only has accurate 

measurements but is also 

easy to implement 

S. Ren et al. 

[19] 

2023 ER, MC, amount of oxygen in 

oxidant agent, pressure, and T 

Physics-informed 

neural network 

method (PINN) 

PINN model can 

outperform all the other 

models (RF, GBR, XGB, 

SVM, and ANN) 

PINN models have 

outperformed prediction 

capability (average test R2 

0.91–0.97) 

Z. Wang et al. 

[20] 

2023 Superheat outlet steam flow, 

Superheat outlet steam 

pressure, Superheat outlet 

steam temperature, Reheat 

steam flow, Reheater inlet 

steam pressure, Reheater outlet 

steam pressure, Reheater inlet 

steam temperature, Reheater 

outlet steam temperature and 

Economizer inlet feed water 

temperature 

Combining a random 

forest (RF) algorithm 

and a lightweight 

CNN. 

Model prediction 

• accuracy:  

RMSE = 13.52704 ± 

0.21036 mg/m3,  

 

• MAE = 9.89313 ± 

0.18288 mg/m3,  

 

• R2 = 0.93337 ± 

0.00222), 

 

CONCLUSION 

 

Machine learning techniques have shown promise in 

accurately predicting and optimizing thermal efficiency 

parameters and emissions in biomass co-firing. 

For thermal efficiency modeling, deep learning 

methods like Deep Neural Networks (DNN) and 

Artificial Neural Networks (ANN) have demonstrated 

superior modeling capabilities, while regression tree, 

random forest, and fuzzy logic (FL) algorithms have 

been effective in optimizing thermal energy production 

and power estimation. These models contribute to 

improved performance and energy savings in co-firing 

systems. 

In emission modeling, machine learning algorithms 

such as Support Vector Machine (SVM), Gaussian 

process (GP), polynomial regression, and fuzzy logic 

(FL) have been successful in predicting emissions like 

CO2, NOx, and other pollutants. These models enhance 

our understanding of the relationships between 

characteristic parameters and emissions, enabling 

effective emission reduction strategies. 

Looking forward, the direction of future research 

should emphasize the development of hybrid models 

that seamlessly integrate domain knowledge and 

physics-based frameworks, further enhancing the 

accuracy and interpretability of predictive models. By 

consolidating these insights, we can continue to drive 

the progress of sustainable energy generation and 

emission reduction practices in biomass co-firing. 
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